MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Irreversible behaviour of a gas owing to Unruh radiation
Irreversible behaviour of a gas owing to Unruh radiation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Irreversible behaviour of a gas owing to Unruh radiation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Irreversible behaviour of a gas owing to Unruh radiation
Irreversible behaviour of a gas owing to Unruh radiation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Irreversible behaviour of a gas owing to Unruh radiation
Irreversible behaviour of a gas owing to Unruh radiation
Paper

Irreversible behaviour of a gas owing to Unruh radiation

2023
Request now and choose the collection method
Overview
When gas molecules collide, they accelerate, and therefore encounter the Fulling-Davies-Unruh and Moore-DeWitt effects. The size of these effects is sufficient to randomize the motion of the gas molecules after about 1 nanosecond at standard temperature and pressure. Such observations show that quantum field theory modifies what is required to isolate a physical system sufficiently for its behaviour to be unitary. In practice the requirements are never satisfied exactly. Therefore the evolution of the observable universe is non-unitary and thermodynamically irreversible.
Publisher
Cornell University Library, arXiv.org
Subject