MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Atom-based coherent quantum-noise cancellation in optomechanics
Atom-based coherent quantum-noise cancellation in optomechanics
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Atom-based coherent quantum-noise cancellation in optomechanics
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Atom-based coherent quantum-noise cancellation in optomechanics
Atom-based coherent quantum-noise cancellation in optomechanics

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Atom-based coherent quantum-noise cancellation in optomechanics
Atom-based coherent quantum-noise cancellation in optomechanics
Paper

Atom-based coherent quantum-noise cancellation in optomechanics

2015
Request Book From Autostore and Choose the Collection Method
Overview
We analyze a quantum force sensor that uses coherent quantum noise cancellation (CQNC) to beat the Standard Quantum Limit (SQL). This sensor, which allows for the continuous, broad-band detection of feeble forces, is a hybrid dual-cavity system comprised of a mesoscopic mechanical resonator optically coupled to an ensemble of ultracold atoms. In contrast to the stringent constraints on dissipation typically associated with purely optical schemes of CQNC, the dissipation rate of the mechanical resonator only needs to be matched to the decoherence rate of the atomic ensemble -- a condition that is experimentally achievable even for the technologically relevant regime of low frequency mechanical resonators with large quality factors. The modular nature of the system further allows the atomic ensemble to aid in the cooling of the mechanical resonator, thereby combining atom-mediated state preparation with sensing deep in the quantum regime.
Publisher
Cornell University Library, arXiv.org

MBRLCatalogueRelatedBooks