MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Discrete epidemic models with two time scales
Discrete epidemic models with two time scales
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Discrete epidemic models with two time scales
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Discrete epidemic models with two time scales
Discrete epidemic models with two time scales

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Discrete epidemic models with two time scales
Discrete epidemic models with two time scales
Paper

Discrete epidemic models with two time scales

2024
Request Book From Autostore and Choose the Collection Method
Overview
The main aim of the work is to present a general class of two time scales discrete-time epidemic models. In the proposed framework the disease dynamics is considered to act on a slower time scale than a second different process that could represent movements between spatial locations, changes of individual activities or behaviours, or others. To include a sufficiently general disease model, we first build up from first principles a discrete-time Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) model and characterize the eradication or endemicity of the disease with the help of its basic reproduction number R0. Then, we propose a general full model that includes sequentially the two processes at different time scales, and proceed to its analysis through a reduced model. The basic reproduction number R0 of the reduced system gives a good approximation of the R0 of the full model since it serves at analyzing its asymptotic behaviour. As an illustration of the proposed general framework, it is shown that there exist conditions under which a locally endemic disease, considering isolated patches in a metapopulation, can be eradicated globally by establishing the appropriate movements between patches.
Publisher
Cornell University Library, arXiv.org