MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Scalable Semidefinite Programming
Scalable Semidefinite Programming
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Scalable Semidefinite Programming
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Scalable Semidefinite Programming
Scalable Semidefinite Programming

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Scalable Semidefinite Programming
Scalable Semidefinite Programming
Paper

Scalable Semidefinite Programming

2021
Request Book From Autostore and Choose the Collection Method
Overview
Semidefinite programming (SDP) is a powerful framework from convex optimization that has striking potential for data science applications. This paper develops a provably correct randomized algorithm for solving large, weakly constrained SDP problems by economizing on the storage and arithmetic costs. Numerical evidence shows that the method is effective for a range of applications, including relaxations of MaxCut, abstract phase retrieval, and quadratic assignment. Running on a laptop equivalent, the algorithm can handle SDP instances where the matrix variable has over \\(10^{14}\\) entries.
Publisher
Cornell University Library, arXiv.org