MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Modelling hCDKL5 heterologous expression in bacteria
Modelling hCDKL5 heterologous expression in bacteria
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Modelling hCDKL5 heterologous expression in bacteria
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Modelling hCDKL5 heterologous expression in bacteria
Modelling hCDKL5 heterologous expression in bacteria

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Modelling hCDKL5 heterologous expression in bacteria
Modelling hCDKL5 heterologous expression in bacteria
Paper

Modelling hCDKL5 heterologous expression in bacteria

2021
Request Book From Autostore and Choose the Collection Method
Overview
Abstract hCDKL5 refers to the human cyclin-dependent kinase that is primarily expressed in the brain where it exerts its function in several neuron districts. Mutations in its coding sequence are often causative of hCDKL5 deficiency disorder. The large-scale recombinant production of hCDKL5 is desirable to boost the translation of current therapeutic approaches into the clinic. However, this is hampered by the following features: i) almost two-thirds of hCDKL5 sequence are predicted to be intrinsically disordered, making this region more susceptible to proteolytic attack; ii) the cytoplasmic accumulation of the enzyme in eukaryotic host cells is associated to toxicity. The bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) is the only prokaryotic host in which the full-length production of hCDKL5 has been demonstrated. To date, a system-level understanding of the metabolic burden imposed by hCDKL5 production is missing, although it would be crucial for the upscaling of the production process. Here, we have combined experimental data on protein production and nutrients assimilation with metabolic modelling to infer the global consequences of hCDKL5 production in PhTAC125 and to identify potential overproduction targets. Our analyses showed a remarkable accuracy of the model in simulating the recombinant strain phenotype and also identified priority targets for optimized protein production. Competing Interest Statement The authors have declared no competing interest.
Publisher
Cold Spring Harbor Laboratory Press,Cold Spring Harbor Laboratory