Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
The broccoli derivative sulforaphane extends lifespan by slowing the transcriptional aging clock
by
Lithgow, Gordon J
, Coleman-Hulbert, Anna L
, Levi, Jonathan N
, Sedore, Christine A
, Segerdell, Erik
, Phillips, Patrick C
, Driscoll, Monica
, Johnson, Erik
in
Physiology
2025
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The broccoli derivative sulforaphane extends lifespan by slowing the transcriptional aging clock
by
Lithgow, Gordon J
, Coleman-Hulbert, Anna L
, Levi, Jonathan N
, Sedore, Christine A
, Segerdell, Erik
, Phillips, Patrick C
, Driscoll, Monica
, Johnson, Erik
in
Physiology
2025
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The broccoli derivative sulforaphane extends lifespan by slowing the transcriptional aging clock
Journal Article
The broccoli derivative sulforaphane extends lifespan by slowing the transcriptional aging clock
2025
Request Book From Autostore
and Choose the Collection Method
Overview
Sulforaphane, an organosulfur isothiocyanate derived from cruciferous vegetables, has been shown to inhibit inflammation, oxidative stress, and cancer cell growth. To explore the potential of sulforaphane as a candidate natural compound for promoting longevity more generally, we tested the dose and age-specific effects of sulforaphane on C. elegans longevity, finding that it can extend lifespan by more than 50% at the most efficacious doses, but that treatment must be initiated early in life to be effective. We then created a novel, gene-specific, transcriptional aging clock, which demonstrated that sulforaphane-treated individuals exhibited a \"transcriptional age\" that was approximately four days younger than age-matched controls, representing a nearly 20% reduction in biological age. The clearest transcriptional responses were detoxification pathways, which, together with the shape of the dose-response curve, indicates a likely hormetic response to sulforaphane. These results support the idea that robust longevity-extending interventions can act via global effects across the organism, as revealed by systems level changes in gene expression.Sulforaphane, an organosulfur isothiocyanate derived from cruciferous vegetables, has been shown to inhibit inflammation, oxidative stress, and cancer cell growth. To explore the potential of sulforaphane as a candidate natural compound for promoting longevity more generally, we tested the dose and age-specific effects of sulforaphane on C. elegans longevity, finding that it can extend lifespan by more than 50% at the most efficacious doses, but that treatment must be initiated early in life to be effective. We then created a novel, gene-specific, transcriptional aging clock, which demonstrated that sulforaphane-treated individuals exhibited a \"transcriptional age\" that was approximately four days younger than age-matched controls, representing a nearly 20% reduction in biological age. The clearest transcriptional responses were detoxification pathways, which, together with the shape of the dose-response curve, indicates a likely hormetic response to sulforaphane. These results support the idea that robust longevity-extending interventions can act via global effects across the organism, as revealed by systems level changes in gene expression.
Publisher
Cold Spring Harbor Laboratory
Subject
This website uses cookies to ensure you get the best experience on our website.