MbrlCatalogueTitleDetail

Do you wish to reserve the book?
61 Treatment-specific immune phenotypes in PBMCs revealed by nELISA high-throughput proteomics
61 Treatment-specific immune phenotypes in PBMCs revealed by nELISA high-throughput proteomics
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
61 Treatment-specific immune phenotypes in PBMCs revealed by nELISA high-throughput proteomics
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
61 Treatment-specific immune phenotypes in PBMCs revealed by nELISA high-throughput proteomics
61 Treatment-specific immune phenotypes in PBMCs revealed by nELISA high-throughput proteomics

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
61 Treatment-specific immune phenotypes in PBMCs revealed by nELISA high-throughput proteomics
61 Treatment-specific immune phenotypes in PBMCs revealed by nELISA high-throughput proteomics
Journal Article

61 Treatment-specific immune phenotypes in PBMCs revealed by nELISA high-throughput proteomics

2023
Request Book From Autostore and Choose the Collection Method
Overview
BackgroundHigh-throughput screening (HTS) programs are increasingly adopting high-content technologies that can better inform the selection of drug candidates early on in the pipelines. For cancer immunotherapy, proteomics tools to investigate interactions between cancer and immune cells compromise either content or cost, limiting access to phenotypic data. The affordable gold-standard in proteomics, the ELISA, has proven difficult to scale. At fault has been the cross-reactivity between ELISA reagents when multiplexing beyond a few dozen antibody pairs. Here, we describe the nELISA: a massively-parallelized high-throughput miniaturized ELISA with a content, cost and throughput amenable to HTS, and demonstrate its applicability to characterize immune phenotypes in co-culture systems.MethodsTo overcome the long-standing cross-reactivity issue, the nELISA uses DNA oligos to pre-assemble each pair of antibodies onto a spectrally barcoded microparticle set. The resulting reagents are fully-integrated nELISA sensors that can be read-out on commercial cytometers, enabling highly-multiplexed and high-throughput analysis. Using this approach, we developed a comprehensive inflammatory panel containing 191 cytokines, chemokines, proteases, growth factors, and soluble receptors. Our results show that the nELISA can maintain single-plex specificity, sensitivity, and quantification as content is scaled to 191-plex. Furthermore, the nELISA performs at a throughput of 1536 samples/cytometer/day, yielding >300,000 data points in a single day, at a cost amenable to high-throughput screening.ResultsTo demonstrate the nELISA’s utility in HTS, we ran the largest PBMC secretome screen to date, in which >7000 PBMC samples were treated with various inflammatory stimuli, and further perturbed with a selected library of 80 recombinant protein ‘perturbagens’. 191 secreted proteins were profiled in all samples, resulting in ~1.4M datapoints (figure 1A). The nELISA profiles were able to capture phenotypes associated with specific stimulation conditions, individual donors, and potent cytokine perturbagens. By compensating for stimulation and donor differences, we clustered perturbagens according to their effects on PBMC secretomes, identifying well-established cell responses such as Th1 or Th2. Novel phenotypic effects were also identified, such as distinct responses to the near identical CXCL12 alpha and beta isoforms (figure 1B). Interestingly, we observed important similarities between PBMC responses to the cytokine drugs IFN beta and IL-1 Receptor antagonist, supporting the use of anakinra as a replacement for IFN beta in certain indications.ConclusionsThe nELISA captures broad secretome ranges and subtle differences in immune phenotypes, revealing critical insights in cell-based screens. Thus, the nELISA is a powerful new tool for cancer immunotherapy assays, including phenotypic screening, target identification/deconvolution, and discovery of markers of target engagement.Abstract 61 Figure 1High-throughput screen of PBMC responses demonstrates the use of the nELISA for drug discovery. (A) Screen design: PBMCs isolated from six donors were treated with inflammatory stimuli at indicated concentrations, and further perturbed with 80 recombinant cytokine \"perturbagens\", generating a total of 7,392 samples; after 24 hours, concentrations of 191 secreted proteins were measured in the supernatant of each sample using the nELISA. (B) UMAP dimensionality reduction of the entire nELISA dataset; datapoints are colored (from left supernatant of each sample using the nELISA. (B) UMAP dimensionality reduction of the entire nELISA dataset; datapoints are colored (from left to right by stimulation condition, by donor, by stimulation concentration, or by individual cytokind perturbagens with strong effects, as indicated.
Publisher
BMJ Publishing Group Ltd,BMJ Publishing Group LTD,BMJ Publishing Group