MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Continuous partitioning of neuronal variability
Continuous partitioning of neuronal variability
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Continuous partitioning of neuronal variability
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Continuous partitioning of neuronal variability
Continuous partitioning of neuronal variability

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Continuous partitioning of neuronal variability
Continuous partitioning of neuronal variability
Journal Article

Continuous partitioning of neuronal variability

2025
Request Book From Autostore and Choose the Collection Method
Overview
Neurons exhibit substantial trial-to-trial variability in response to repeated stimuli, posing a major challenge for understanding the information content of neural spike trains. In visual cortex, responses show greater-than-Poisson variability, whose origins and structure remain unclear. To address this puzzle, we introduce a continuous, doubly stochastic model of spike train variability that partitions neural responses into a smooth stimulus-driven component and a time-varying stochastic gain process. We applied this model to spike trains from four visual areas (LGN, V1, V2, and MT) and found that the gain process is well described by an exponentiated power law, with increasing amplitude and slower decay at higher levels of the visual hierarchy. The model also provides analytical expressions for the Fano factor of binned spike counts as a function of timescale, linking observed variability to underlying modulatory dynamics. Together, these results establish a principled framework for characterizing neural variability across cortical processing stages.
Publisher
Cold Spring Harbor Laboratory
Subject