Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Liquid phase exfoliation of 2D layered materials and their application
by
Winchester, Andrew J
in
Condensed matter physics
/ Plasma physics
2013
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Liquid phase exfoliation of 2D layered materials and their application
by
Winchester, Andrew J
in
Condensed matter physics
/ Plasma physics
2013
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Liquid phase exfoliation of 2D layered materials and their application
Dissertation
Liquid phase exfoliation of 2D layered materials and their application
2013
Request Book From Autostore
and Choose the Collection Method
Overview
In this work, several materials possessing a layered structure were investigated using a technique of exfoliation in liquid phase to produce few- to mono-layers of the material. Materials exfoliated in such a way included graphite, boron nitride, molybdenum disulfide and tungsten disulfide. Subsequent transmission electron microscopy and accompanying electron diffraction patterns revealed that few and mono layer forms of these materials have been realized through this exfoliation method. Ultraviolet-visible spectroscopy confirmed the shifting of the band gaps in molybdenum and tungsten disulfides that is predicted in reducing the number of layers of these materials and was also used to confirm the band gap of the boron nitride. As a potential application, exfoliated molybdenum disulfide was used in the construction of electrodes for electrical charge storage in an electrochemical double layer capacitor, or supercapacitor, style device. Cyclic voltammetry, galvanostatic charge discharge, and electrochemical impedance spectroscopy measurements were performed using three different electrolytes, which showed good capacitive behavior for these devices. Using the data from electrochemical impedance spectroscopy, equivalent circuit models were generated to represent the systems in different electrolytes. From this, it was determined that the capacitive behavior of these systems was partially diffusion limited.
Publisher
ProQuest Dissertations & Theses
Subject
ISBN
1303987457, 9781303987458
This website uses cookies to ensure you get the best experience on our website.