MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Topographic barriers drive the pronounced genetic subdivision of a range-limited fossorial rodent
Topographic barriers drive the pronounced genetic subdivision of a range-limited fossorial rodent
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Topographic barriers drive the pronounced genetic subdivision of a range-limited fossorial rodent
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Topographic barriers drive the pronounced genetic subdivision of a range-limited fossorial rodent
Topographic barriers drive the pronounced genetic subdivision of a range-limited fossorial rodent

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Topographic barriers drive the pronounced genetic subdivision of a range-limited fossorial rodent
Topographic barriers drive the pronounced genetic subdivision of a range-limited fossorial rodent
Paper

Topographic barriers drive the pronounced genetic subdivision of a range-limited fossorial rodent

2023
Request Book From Autostore and Choose the Collection Method
Overview
Due to their limited dispersal ability, fossorial species with predominantly belowground activity usually show increased levels of population subdivision across relatively small spatial scales. This may be exacerbated in harsh mountain ecosystems, where landscape geomorphology limits species’ dispersal ability and leads to small effective population sizes, making species susceptible to environmental change. The giant root-rat (Tachyoryctes macrocephalus) is a highly fossorial rodent confined to the afro-alpine ecosystem of the Bale Mountains in Ethiopia. Using mitochondrial and low-coverage nuclear genomes, we investigated 77 giant root-rat individuals sampled from nine localities across its whole ∼1,000 km2 range. Our data revealed a distinct division into a northern and southern subpopulation, with no signs of gene flow, and higher nuclear genetic diversity in the south. Landscape genetic analyses of the mitochondrial genomes indicated that population subdivision was driven by steep slopes and elevation differences of up to 500 m across escarpments separating the north and south, potentially reinforced by glaciation of the south during the Late Pleistocene (∼42,000 to 16,000 years ago). Despite the pronounced subdivision observed at the range-wide scale, weak geographic structuring of sampling localities within subpopulations indicated gene flow across distances of at least 16 km, suggesting aboveground dispersal and high mobility for relatively long distances. Our study highlights how topographic barriers can lead to the genetic subdivision of fossorial species, despite their potential to maintain gene flow at the local scale. These factors can reduce genetic variability, which should be considered when developing conservation strategies.
Publisher
Cold Spring Harbor Laboratory