MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Continuous collective analysis of chemical reactions
Continuous collective analysis of chemical reactions
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Continuous collective analysis of chemical reactions
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Continuous collective analysis of chemical reactions
Continuous collective analysis of chemical reactions

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Continuous collective analysis of chemical reactions
Continuous collective analysis of chemical reactions
Paper

Continuous collective analysis of chemical reactions

2024
Request Book From Autostore and Choose the Collection Method
Overview
Modularized synthesis of small organic molecules is transforming our capacity to create medicines and materials. Disruptive acceleration of this molecule building strategy will broadly unlock its functional potential and requires integration of many new assembly chemistries. Recent advances in high-throughput chemistry stand to enable selection of appropriate chemical reaction conditions from the vast range of potential options. However, a disconnect between the rates of exploration and evaluation has limited progress. Here we report how intrinsic fragmentation features of chemical building blocks generalizes their analysis to yield sub-second readouts of reaction outcomes. Central to this advance was identifying that groups typically attached to boron, nitrogen, and oxygen atoms fragment in a specific and selective manner by mass spectrometry, enabling target agnostic analysis. Combining these features with acoustic droplet ejection mass spectrometry we could eliminate slow chromatographic steps and continuously evaluate chemical reaction outcomes in multiplexed formats. This allowed rapid assignment of reaction conditions to molecules derived from ultra-high throughput chemical synthesis experiments.