MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Replacement-Based Key-Controlled Circuits: A New Lightweight Logic-Locking Technique to Prevent the SAT Attack and Its Variants
Replacement-Based Key-Controlled Circuits: A New Lightweight Logic-Locking Technique to Prevent the SAT Attack and Its Variants
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Replacement-Based Key-Controlled Circuits: A New Lightweight Logic-Locking Technique to Prevent the SAT Attack and Its Variants
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Replacement-Based Key-Controlled Circuits: A New Lightweight Logic-Locking Technique to Prevent the SAT Attack and Its Variants
Replacement-Based Key-Controlled Circuits: A New Lightweight Logic-Locking Technique to Prevent the SAT Attack and Its Variants

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Replacement-Based Key-Controlled Circuits: A New Lightweight Logic-Locking Technique to Prevent the SAT Attack and Its Variants
Replacement-Based Key-Controlled Circuits: A New Lightweight Logic-Locking Technique to Prevent the SAT Attack and Its Variants
Journal Article

Replacement-Based Key-Controlled Circuits: A New Lightweight Logic-Locking Technique to Prevent the SAT Attack and Its Variants

2026
Request Book From Autostore and Choose the Collection Method
Overview
The current trend of globalization of the supply chain in the integrated circuit (IC) industry has led to numerous security issues, such as intellectual property (IP) piracy, overbuilding, hardware Trojan (HT), and so on. Over the past decade or so, logic locking has been developed as an important method to prevent or mitigate the above security issues in ICs throughout their lifecycles. However, most published logic locking schemes are vulnerable to the SAT attack and its variants. Existing SAT-resilient locking schemes always entail a trade-off between security and effectiveness and incur significant hardware overhead. In this paper, we propose a new replacement-based key-controlled circuit (called RKC), the application of which changes the underlying framework of traditional logic locking designs, making the SAT attack and its variants infeasible in the framework. To achieve stronger functional and structural obfuscation and to validate the extensibility of the proposed method within the modified logic-locking design framework, we develop a new multi-input key-controlled circuit (called MKC) via vertical extension, also based on replacement applied to the locking design. In addition, we expand the two proposed circuits horizontally by varying the design parameter m, yielding four logic-locking design circuits. Relevant experiments performed on six selected benchmark circuits from ISCAS’85 and MCNC benchmarks show that the proposed method demonstrates superior/less hardware overhead compared to four recently published locking methods, i.e., GateLock, SKG-Lock, SKG-Lock+, and CAS-Lock.