Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Faults-as-address simulation
by
Kulak, Georgiy
, Chumachenko, Svetlana
, Litvinova, Eugenia
, Khakhanova, Hanna
, Hahanov, Ivan
, Ponomarova, Veronika
, Hahanov, Vladimir
2024
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Faults-as-address simulation
by
Kulak, Georgiy
, Chumachenko, Svetlana
, Litvinova, Eugenia
, Khakhanova, Hanna
, Hahanov, Ivan
, Ponomarova, Veronika
, Hahanov, Vladimir
2024
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Journal Article
Faults-as-address simulation
2024
Request Book From Autostore
and Choose the Collection Method
Overview
Fault-as-address-simulation (FAAS) is a simulation mechanism for testing combinations of circuit line faults, represented by the bit addresses of element logical vectors. The XOR relationship between the test set T and the truth table L of the element forms a deductive vector for fault simulation, using truth table addresses or the logic vector bits. Addresses are used in the simulation matrix to mark those n-combinations of input faults detected at the element's output. The columns of the simulation matrix are treated as n-row addresses to generate an element output row via a deductive vector. There is no transport of input faults to the element output, Only the 1-signals written in the non-input row coordinates of the circuit simulation matrix. The simulation matrix is initially filled with 1-signals along the main diagonal. The line faults detected on the test set of circuits are determined by the inverse of lines good values, which have 1-values in the matrix row corresponding to the output circuit element. The deductive vector is obtained by the XOR-relations between the test set and logical vector in three table operations. The advantage of the proposed FAAS mechanism is the predictable complexity of the algorithm and memory consumption for storing data structures when simulating a test set.
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.