Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
The Spacey Random Walk: A Stochastic Process for Higher-Order Data
by
Lim, Lek-Heng
, Gleich, David F.
, Benson, Austin R.
in
RESEARCH SPOTLIGHTS
2017
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The Spacey Random Walk: A Stochastic Process for Higher-Order Data
by
Lim, Lek-Heng
, Gleich, David F.
, Benson, Austin R.
in
RESEARCH SPOTLIGHTS
2017
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The Spacey Random Walk: A Stochastic Process for Higher-Order Data
Journal Article
The Spacey Random Walk: A Stochastic Process for Higher-Order Data
2017
Request Book From Autostore
and Choose the Collection Method
Overview
Random walks are a fundamental model in applied mathematics and are a common example of a Markov chain. The limiting stationary distribution of the Markov chain represents the fraction of the time spent in each state during the stochastic process. A standard way to compute this distribution for a random walk on a finite set of states is to compute the Perron vector of the associated transition matrix. There are algebraic analogues of this Perron vector in terms of transition probability tensors of higher-order Markov chains. These vectors are nonnegative, have dimension equal to the dimension of the state space, and sum to one, and they are derived by making an algebraic substitution in the equation for the joint-stationary distribution of a higher-order Markov chain. Here, we present the spacey random walk, a non-Markovian stochastic process whose stationary distribution is given by the tensor eigenvector. The process itself is a vertex-reinforced random walk, and its discrete dynamics are related to a continuous dynamical system. We analyze the convergence properties of these dynamics and discuss numerical methods for computing the stationary distribution. Finally, we provide several applications of the spacey random walk model in population genetics, ranking, and clustering data, and we use the process to analyze New York taxi trajectory data. This example shows definite non-Markovian structure.
Publisher
Society for Industrial and Applied Mathematics
Subject
This website uses cookies to ensure you get the best experience on our website.