Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Health status classification model for medical adherence system in retirement township version 1; peer review: awaiting peer review
by
Tan, Yi Fei
, Ooi, Chee Pun
, Tan, Wooi Haw
, Abubaker Sherif, Abubaker Faisal
2021
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Health status classification model for medical adherence system in retirement township version 1; peer review: awaiting peer review
by
Tan, Yi Fei
, Ooi, Chee Pun
, Tan, Wooi Haw
, Abubaker Sherif, Abubaker Faisal
2021
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Health status classification model for medical adherence system in retirement township version 1; peer review: awaiting peer review
Journal Article
Health status classification model for medical adherence system in retirement township version 1; peer review: awaiting peer review
2021
Request Book From Autostore
and Choose the Collection Method
Overview
Medical adherence and remote patient monitoring have gained huge attention from researchers recently, especially with the need to observe the patients' health outside hospitals due to the ongoing pandemic. The main goal of this research work is to propose a health status classification model that provides a numerical indicator of the overall health condition of a patient via four major vital signs, which are body temperature, blood pressure, blood oxygen saturation level, and heart rate. A dataset has been prepared based on the data obtained from hospital records, with these four vital signs extracted for each patient. This dataset provides a label associating each patient to the number of medical diagnoses. Generally, the number of diagnoses correlates with the patient's medical condition, with no diagnoses indicating normal condition, one to two diagnoses suggest low risk, and more than that implies high risk. Thus, we propose a method to classify a patient's health status into three classes, which are normal, low risk and high risk. This would provide guidance for healthcare workers on the patient's medical condition. By training the classification model using the prepared dataset, the seriousness of a patient's health condition can be predicted. This prediction is performed by classifying the patients based on their four vital signs. Our tests have yielded encouraging results using precision and recall as the evaluation metrics. The key outcome of this work is a trained classification model that quantifies a patient's health condition based on four vital signs. Nevertheless, the model can be further improved by considering more input features such as medical history. The results obtained from this research can assist medical personnel by providing a secondary advice regarding the health status for the patients who are located remotely from the medical facilities.
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.