Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Financial revolution: a systemic analysis of artificial intelligence and machine learning in the banking sector
by
Molina-Velarde, Pedro
, Yactayo-Arias, Cesar
, Andrade-Arenas, Laberiano
, Jáuregui-Velarde, Raúl
2024
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Financial revolution: a systemic analysis of artificial intelligence and machine learning in the banking sector
by
Molina-Velarde, Pedro
, Yactayo-Arias, Cesar
, Andrade-Arenas, Laberiano
, Jáuregui-Velarde, Raúl
2024
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Financial revolution: a systemic analysis of artificial intelligence and machine learning in the banking sector
Journal Article
Financial revolution: a systemic analysis of artificial intelligence and machine learning in the banking sector
2024
Request Book From Autostore
and Choose the Collection Method
Overview
This paper reviews the advances, challenges, and approaches of artificial intelligence (AI) and machine learning (ML) in the banking sector. The use of these technologies is accelerating in various industries, including banking. However, the literature on banking is scattered, making a global understanding difficult. This study reviewed the main approaches in terms of applications and algorithmic models, as well as the benefits and challenges associated with their implementation in banking, in addition to a bibliometric analysis of variables related to the distribution of publications and the most productive countries, as well as an analysis of the co-occurrence and dynamics of keywords. Following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) framework, forty articles were selected for review. The results indicate that these technologies are used in the banking sector for customer segmentation, credit risk analysis, recommendation, and fraud detection. It should be noted that credit analysis and fraud detection are the most implemented areas, using algorithms such as random forests (RF), decision trees (DT), support vector machines (SVM), and logistic regression (LR), among others. In addition, their use brings significant benefits for decision-making and optimizing banking operations. However, the handling of substantial amounts of data with these technologies poses ethical challenges.
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.