Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Configuring Random Graph Models with Fixed Degree Sequences
by
Nishimura, Joel
, Ugander, Johan
, Larremore, Daniel B.
, Fosdick, Bailey K.
in
RESEARCH SPOTLIGHTS
2018
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Configuring Random Graph Models with Fixed Degree Sequences
by
Nishimura, Joel
, Ugander, Johan
, Larremore, Daniel B.
, Fosdick, Bailey K.
in
RESEARCH SPOTLIGHTS
2018
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Configuring Random Graph Models with Fixed Degree Sequences
Journal Article
Configuring Random Graph Models with Fixed Degree Sequences
2018
Request Book From Autostore
and Choose the Collection Method
Overview
Random graph null models have found widespread application in diverse research communities analyzing network datasets, including social, information, and economic networks, as well as food webs, protein-protein interactions, and neuronal networks. The most popular random graph null models, called configuration models, are defined as uniform distributions over a space of graphs with a fixed degree sequence. Commonly, properties of an empirical network are compared to properties of an ensemble of graphs from a configuration model in order to quantify whether empirical network properties are meaningful or whether they are instead a common consequence of the particular degree sequence. In this work we study the subtle but important decisions underlying the specification of a configuration model, and we investigate the role these choices play in graph sampling procedures and a suite of applications. We place particular emphasis on the importance of specifying the appropriate graph labeling—stub-labeled or vertex-labeled—under which to consider a null model, a choice that closely connects the study of random graphs to the study of random contingency tables. We show that the choice of graph labeling is inconsequential for studies of simple graphs, but can have a significant impact on analyses of multigraphs or graphs with self-loops. The importance of these choices is demonstrated through a series of three in-depth vignettes, analyzing three different network datasets under many different configuration models and observing substantial differences in study conclusions under different models. We argue that in each case, only one of the possible configuration models is appropriate. While our work focuses on undirected static networks, it aims to guide the study of directed networks, dynamic networks, and all other network contexts that are suitably studied through the lens of random graph null models.
Publisher
Society for Industrial and Applied Mathematics
Subject
This website uses cookies to ensure you get the best experience on our website.