MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A STUDY OF ERROR VARIANCE ESTIMATION IN LASSO REGRESSION
A STUDY OF ERROR VARIANCE ESTIMATION IN LASSO REGRESSION
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A STUDY OF ERROR VARIANCE ESTIMATION IN LASSO REGRESSION
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A STUDY OF ERROR VARIANCE ESTIMATION IN LASSO REGRESSION
A STUDY OF ERROR VARIANCE ESTIMATION IN LASSO REGRESSION

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A STUDY OF ERROR VARIANCE ESTIMATION IN LASSO REGRESSION
A STUDY OF ERROR VARIANCE ESTIMATION IN LASSO REGRESSION
Journal Article

A STUDY OF ERROR VARIANCE ESTIMATION IN LASSO REGRESSION

2016
Request Book From Autostore and Choose the Collection Method
Overview
Variance estimation in the linear model when p > n is a difficult problem. Standard least squares estimation techniques do not apply. Several variance estimators have been proposed in the literature, all with accompanying asymptotic results proving consistency and asymptotic normality under a variety of assumptions. It is found, however, that most of these estimators suffer large biases in finite samples when true underlying signals become less sparse with larger per element signal strength. One estimator seems to merit more attention than it has received in the literature: a residual sum of squares based estimator using Lasso coefficients with regularisation parameter selected adaptively (via cross-validation). In this paper, we review several variance estimators and perform a reasonably extensive simulation study in an attempt to compare their finite sample performance. It would seem from the results that variance estimators with adaptively chosen regularisation parameters perform admirably over a broad range of sparsity and signal strength settings. Finally, some intial theoretical analyses pertaining to these types of estimators are proposed and developed.
Publisher
Institute of Statistical Science, Academia Sinica and International Chinese Statistical Association