Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
On the Eventual Exponential Positivity of Some Tree Sign Patterns
by
Li, Zhongshan
, Xu, Sanzhang
, Yu, Ber-Lin
in
Classification
/ Double stars
/ Eigenvalues
2021
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
On the Eventual Exponential Positivity of Some Tree Sign Patterns
by
Li, Zhongshan
, Xu, Sanzhang
, Yu, Ber-Lin
in
Classification
/ Double stars
/ Eigenvalues
2021
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
On the Eventual Exponential Positivity of Some Tree Sign Patterns
Journal Article
On the Eventual Exponential Positivity of Some Tree Sign Patterns
2021
Request Book From Autostore
and Choose the Collection Method
Overview
An n×n matrix A is called eventually exponentially positive (EEP) if etA=∑k=0∞tkAkk!>0 for all t≥t0, where t0≥0. A matrix whose entries belong to the set +,−,0 is called a sign pattern. An n×n sign pattern A is called potentially eventually exponentially positive (PEEP) if there exists some real matrix realization A of A that is EEP. Characterizing the PEEP sign patterns is a longstanding open problem. In this article, A is called minimally potentially eventually exponentially positive (MPEEP), if A is PEEP and no proper subpattern of A is PEEP. Some preliminary results about MPEEP sign patterns and PEEP sign patterns are established. All MPEEP sign patterns of orders n≤3 are identified. For the n×n tridiagonal sign patterns Tn, we show that there exists exactly one MPEEP tridiagonal sign pattern Tno. Consequently, we classify all PEEP tridiagonal sign patterns as the superpatterns of Tno. We also classify all PEEP star sign patterns Sn and double star sign patterns DS(n,m) by identifying all the MPEEP star sign patterns and the MPEEP double star sign patterns, respectively.
Publisher
MDPI AG
Subject
This website uses cookies to ensure you get the best experience on our website.