MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Preparation and Properties of Ultra-fine HNS-IV
Preparation and Properties of Ultra-fine HNS-IV
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Preparation and Properties of Ultra-fine HNS-IV
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Preparation and Properties of Ultra-fine HNS-IV
Preparation and Properties of Ultra-fine HNS-IV

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Preparation and Properties of Ultra-fine HNS-IV
Preparation and Properties of Ultra-fine HNS-IV
Journal Article

Preparation and Properties of Ultra-fine HNS-IV

2023
Request Book From Autostore and Choose the Collection Method
Overview
Ultra-fine 2,2’,4,4’,6,6’- Hexanitrostilbene (HNS-IV) was obtained by HNS-II by vibration cavity comminute. This method uses only alcohol and deionized water, which can be viewed as a green technology. The morphology, particle size, specific surface area, thermal decomposition property and the threshold energy for slapper detonator were compared between HNS-IV and HNS-II in this paper. Results show that after HNS pulverizing, the particle size decreased from 27.18μm to 1.44μm, the specific surface area increased from 0.73m 2• g −1 to 9.10m 2• g −1 . DSC analysis shows that the decomposition peak temperature T d decreases and the melting temperature T m increases after pulverizing. It is speculated that in the explosive reaction with very high heating rate, the enthalpy of decomposition will be increased by pulverizing, which will be more conducive to detonation growth and explosive reaction. According to the calculation of thermal decomposition kinetics, the decomposition and activation energy Ea of HNS decreases after pulverizing, and the thermal decomposition reaction rate of HNS-IV increases when the temperature is less than 409.6°C. The initiation threshold test of the impact plate shows that the 50% initiation threshold energy of HNS- II is 1.242J, and the 50% initiation threshold energy of HNS-IV is 0.558J, and the initiation threshold for slapper detonatorer is significantly reduced by 55%. This means that the ultra-fine HNS-IV is very suitable as the main ingredient in the booster in the EFI initiation.