MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Visible-Light Photocatalytic Degradation of Aniline Blue by Stainless-Steel Foam Coated with TiO2 Grafted with Anthocyanins from a Maqui-Blackberry System
Visible-Light Photocatalytic Degradation of Aniline Blue by Stainless-Steel Foam Coated with TiO2 Grafted with Anthocyanins from a Maqui-Blackberry System
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Visible-Light Photocatalytic Degradation of Aniline Blue by Stainless-Steel Foam Coated with TiO2 Grafted with Anthocyanins from a Maqui-Blackberry System
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Visible-Light Photocatalytic Degradation of Aniline Blue by Stainless-Steel Foam Coated with TiO2 Grafted with Anthocyanins from a Maqui-Blackberry System
Visible-Light Photocatalytic Degradation of Aniline Blue by Stainless-Steel Foam Coated with TiO2 Grafted with Anthocyanins from a Maqui-Blackberry System

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Visible-Light Photocatalytic Degradation of Aniline Blue by Stainless-Steel Foam Coated with TiO2 Grafted with Anthocyanins from a Maqui-Blackberry System
Visible-Light Photocatalytic Degradation of Aniline Blue by Stainless-Steel Foam Coated with TiO2 Grafted with Anthocyanins from a Maqui-Blackberry System
Journal Article

Visible-Light Photocatalytic Degradation of Aniline Blue by Stainless-Steel Foam Coated with TiO2 Grafted with Anthocyanins from a Maqui-Blackberry System

2020
Request Book From Autostore and Choose the Collection Method
Overview
Anthocyanins from maqui (Aristotelia chilensis) and blackberry (Rubus glaucus) were used as light harvesters to improve the photocatalytic activity of titanium dioxide in visible light. Anthocyanins from both species were obtained using high-frequency ultrasound-assisted liquid-liquid extraction with methanol. Mixtures of anthocyanins were developed to study their effectiveness in the visible light/TiO2 reaction for the oxidation of aniline blue. For this purpose, stainless-steel foams were covered with TiO2 and anthocyanin and characterized by SEM. Different samples were fabricated by varying the ratio of the two anthocyanins in the mixture (100, 75, 50, 25 and 0 vol% of maqui-anthocyanin (delphinidin)). The mixtures of 25 vol% anthocyanin from maqui and 75 vol% anthocyanin from blackberry had higher total anthocyanin content and better photocatalytic activity in visible light: degradation of aniline blue was 40% at pH 7, 56% at pH 3 and 95% at pH 3 with the injection of oxygen for 2 h in comparison with TiO2-foam/UV light, which yielded values of 13% at pH 7 and 73% at pH 3 with and without the addition of oxygen. Natural dyes that are low-cost and environmentally friendly substances are shown to be capable of improving the visible-light photocatalytic activity of TiO2.

MBRLCatalogueRelatedBooks