Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Gait multi-objectives optimization of lower limb exoskeleton robot based on BSO-EOLLFF algorithm
by
Zhang, Junxia
, Zhang, Peng
, Elsabbagh, Ahmed
2023
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Gait multi-objectives optimization of lower limb exoskeleton robot based on BSO-EOLLFF algorithm
by
Zhang, Junxia
, Zhang, Peng
, Elsabbagh, Ahmed
2023
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Gait multi-objectives optimization of lower limb exoskeleton robot based on BSO-EOLLFF algorithm
Journal Article
Gait multi-objectives optimization of lower limb exoskeleton robot based on BSO-EOLLFF algorithm
2023
Request Book From Autostore
and Choose the Collection Method
Overview
Aiming at problems of low optimization accuracy and slow convergence speed in the gait optimization algorithm of lower limb exoskeleton robot, a novel gait multi-objectives optimization strategy based on beetle swarm optimization (BSO)-elite opposition-based learning (EOL) levy flight foraging (LFF) algorithm was proposed. In order to avoid the algorithm from falling into the local optimum, the EOL strategy with global search capability, the LFF strategy with local search capability and the dynamic mutation strategy with high population diversity were introduced to improve optimization performance. The optimization was performed by establishing a multi-objectives optimization function with the robot’s gait zero moment point (ZMP) stability margin and driving energy consumption. The joint comparative tests were carried out in SolidWorks, ADAMS and MATLAB software. The simulation results showed that compared with the particle swarm optimization algorithm and the BSO algorithm, the ZMP stability margin obtained by the BSO-EOLLFF algorithm was increased, and the average driving energy consumption was reduced by 25.82% and 17.26%, respectively. The human-machine experiments were conducted to verify the effectiveness and superiority. The robot could realize stable and smooth walking with less energy consumption. This research will provide support for the application of exoskeleton robot.
Publisher
Cambridge University Press
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.