Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Novel Geometries for Stereotactic Localizers
by
Bruna, Andres
, Brown, Russell A
, Sedrak, Mark
, Alaminos-Bouza, Armando L
in
Medical Physics
/ Medical Simulation
/ Neurosurgery
2021
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Novel Geometries for Stereotactic Localizers
by
Bruna, Andres
, Brown, Russell A
, Sedrak, Mark
, Alaminos-Bouza, Armando L
in
Medical Physics
/ Medical Simulation
/ Neurosurgery
2021
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Journal Article
Novel Geometries for Stereotactic Localizers
2021
Request Book From Autostore
and Choose the Collection Method
Overview
The N-localizer is generally utilized in a 3-panel or, more rarely, a 4-panel system for computing stereotactic positions. However, a stereotactic frame that incorporates a 2-panel (bipanel) N-localizer system with panels affixed to only the left and right sides of the frame offers several advantages: improved ergonomics to attach the panels, reduced claustrophobia for the patient, mitigation of posterior panel contact with imaging systems, and reduced complexity. A bipanel system that comprises two standard N-localizer panels yields only two three-dimensional (3D) coordinates, which are insufficient to solve for the stereotactic matrix without further information. While additional information to determine the stereotactic positions could include scalar distances from Digital Imaging and Communications in Medicine (DICOM) metadata or 3D regression across the imaging volume, both have risks related to noise and error propagation. Therefore, we sought to develop new stereotactic localizers that comprise only lateral fiducials (bipanel) that leave the front and back regions of the patient accessible but that contain enough information to solve for the stereotactic matrix using each image independently. Methods: To solve the stereotactic matrix, we assumed the need to compute three or more 3D points from a single image. Several localizer options were studied using Monte Carlo simulations to understand the effect of errors on the computed target location. The simulations included millions of possible combinations for computing the stereotactic matrix in the presence of random errors of 1mm magnitude. The matrix then transformed coordinates for a target that was placed 50mm anterior, 50mm posterior, 50mm lateral, or 50mm anterior and 50mm lateral to the centre of the image. Simulated cross-sectional axial images of the novel localizer systems were created and converted into DICOM images representing computed tomography (CT) images. Results: Three novel models include the M-localizer, F-localizer, and Z-localizer. For each of these localizer systems, optimized results were obtained using an overdetermined system of equations made possible by more than three diagonal bars. In each case, the diagonal bar position was computed using standard N-localizer mathematics. Additionally, the M-localizer allowed adding a computation using the Sturm-Pastyr method. Monte Carlo simulation demonstrated that the Z-localizer provided optimal results.INTRODUCTIONThe N-localizer is generally utilized in a 3-panel or, more rarely, a 4-panel system for computing stereotactic positions. However, a stereotactic frame that incorporates a 2-panel (bipanel) N-localizer system with panels affixed to only the left and right sides of the frame offers several advantages: improved ergonomics to attach the panels, reduced claustrophobia for the patient, mitigation of posterior panel contact with imaging systems, and reduced complexity. A bipanel system that comprises two standard N-localizer panels yields only two three-dimensional (3D) coordinates, which are insufficient to solve for the stereotactic matrix without further information. While additional information to determine the stereotactic positions could include scalar distances from Digital Imaging and Communications in Medicine (DICOM) metadata or 3D regression across the imaging volume, both have risks related to noise and error propagation. Therefore, we sought to develop new stereotactic localizers that comprise only lateral fiducials (bipanel) that leave the front and back regions of the patient accessible but that contain enough information to solve for the stereotactic matrix using each image independently. Methods: To solve the stereotactic matrix, we assumed the need to compute three or more 3D points from a single image. Several localizer options were studied using Monte Carlo simulations to understand the effect of errors on the computed target location. The simulations included millions of possible combinations for computing the stereotactic matrix in the presence of random errors of 1mm magnitude. The matrix then transformed coordinates for a target that was placed 50mm anterior, 50mm posterior, 50mm lateral, or 50mm anterior and 50mm lateral to the centre of the image. Simulated cross-sectional axial images of the novel localizer systems were created and converted into DICOM images representing computed tomography (CT) images. Results: Three novel models include the M-localizer, F-localizer, and Z-localizer. For each of these localizer systems, optimized results were obtained using an overdetermined system of equations made possible by more than three diagonal bars. In each case, the diagonal bar position was computed using standard N-localizer mathematics. Additionally, the M-localizer allowed adding a computation using the Sturm-Pastyr method. Monte Carlo simulation demonstrated that the Z-localizer provided optimal results.The three proposed novel models meet our design objectives. Of the three, the Z-localizer produced the least propagation of error. The M-localizer was simpler and had slightly more error than the Z-localizer. The F-localizer produced more error than either the Z-localizer or M-localizer. Further study is needed to determine optimizations using these novel models.CONCLUSIONThe three proposed novel models meet our design objectives. Of the three, the Z-localizer produced the least propagation of error. The M-localizer was simpler and had slightly more error than the Z-localizer. The F-localizer produced more error than either the Z-localizer or M-localizer. Further study is needed to determine optimizations using these novel models.
Publisher
Cureus
Subject
This website uses cookies to ensure you get the best experience on our website.