MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Frames and Numerical Approximation
Frames and Numerical Approximation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Frames and Numerical Approximation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Frames and Numerical Approximation
Frames and Numerical Approximation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Frames and Numerical Approximation
Frames and Numerical Approximation
Journal Article

Frames and Numerical Approximation

2019
Request Book From Autostore and Choose the Collection Method
Overview
Functions of one or more variables are usually approximated with a basis: a complete, linearly independent system of functions that spans a suitable function space. The topic of this paper is the numerical approximation of functions using the more general notion of frames: that is, complete systems that are generally redundant but provide infinite representations with bounded coefficients. While frames are well known in image and signal processing, coding theory, and other areas of applied mathematics, their use in numerical analysis is far less widespread. Yet, as we show via a series of examples, frames are more flexible than bases and can be constructed easily in a range of problems where finding orthonormal bases with desirable properties (rapid convergence, high-resolution power, etc.) is difficult or impossible. For instance, we exhibit a frame which yields simple, high-order approximations of smooth, multivariate functions in arbitrary geometries. A key concern when using frames is that computing a best approximation requires solving an ill-conditioned linear system. Nonetheless, we construct a frame approximation via regularization with bounded condition number (with respect to perturbations in the data), which approximates any function up to an error of order √ϵ, or even of order ϵ with suitable modifications. Here, ϵ is a threshold value that can be chosen by the user. Crucially, rate of decay of the error down to this level is determined by the existence of approximate representations of f in the frame possessing small-norm coefficients. We demonstrate the existence of such representations in all of our examples. Overall, our analysis suggests that frames are a natural generalization of bases in which to develop numerical approximations. In particular, even in the presence of severely ill-conditioned linear systems, the frame condition imposes sufficient mathematical structure in order to give rise to accurate, well-conditioned approximations.
Publisher
Society for Industrial and Applied Mathematics