Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
A comparison of differential rotation measurements – (Invited Review)
by
Beck, John G.
in
Convection
/ Solar physics
/ Studies
2000
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A comparison of differential rotation measurements – (Invited Review)
by
Beck, John G.
in
Convection
/ Solar physics
/ Studies
2000
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A comparison of differential rotation measurements – (Invited Review)
Journal Article
A comparison of differential rotation measurements – (Invited Review)
2000
Request Book From Autostore
and Choose the Collection Method
Overview
Observers have long measured solar rotation with different techniques and obtained different results. This paper compares differential rotation measurements from four techniques: Doppler shift, Doppler feature tracking, magnetic feature tracking, and p-mode splittings. The different rotation rates measured by the first three techniques are interpreted as rotation rates of solar phenomena which depend on the properties and depth of that which is measured. This interpretation is supported by comparison with rotation measurements obtained from p-mode splittings except for Doppler features. The rotation rate of the plasma corresponds to the surface rate obtained by inversions; the rates of magnetic features correspond to the rotation rate at various depths within the convection zone. Supergranulation rotates at a rate greater than the maximum rotation rate within the convection zone, suggesting that supergranules are not simple convection cells anchored at a particular depth.[PUBLICATION ABSTRACT]
Publisher
Springer Nature B.V
Subject
This website uses cookies to ensure you get the best experience on our website.