MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Designing a Streaming Algorithm for Outlier Detection in Data Mining—An Incrementa Approach
Designing a Streaming Algorithm for Outlier Detection in Data Mining—An Incrementa Approach
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Designing a Streaming Algorithm for Outlier Detection in Data Mining—An Incrementa Approach
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Designing a Streaming Algorithm for Outlier Detection in Data Mining—An Incrementa Approach
Designing a Streaming Algorithm for Outlier Detection in Data Mining—An Incrementa Approach

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Designing a Streaming Algorithm for Outlier Detection in Data Mining—An Incrementa Approach
Designing a Streaming Algorithm for Outlier Detection in Data Mining—An Incrementa Approach
Journal Article

Designing a Streaming Algorithm for Outlier Detection in Data Mining—An Incrementa Approach

2020
Request Book From Autostore and Choose the Collection Method
Overview
To design an algorithm for detecting outliers over streaming data has become an important task in many common applications, arising in areas such as fraud detections, network analysis, environment monitoring and so forth. Due to the fact that real-time data may arrive in the form of streams rather than batches, properties such as concept drift, temporal context, transiency, and uncertainty need to be considered. In addition, data processing needs to be incremental with limited memory resource, and scalable. These facts create big challenges for existing outlier detection algorithms in terms of their accuracies when they are implemented in an incremental fashion, especially in the streaming environment. To address these problems, we first propose C_KDE_WR, which uses sliding window and kernel function to process the streaming data online, and reports its results demonstrating high throughput on handling real-time streaming data, implemented in a CUDA framework on Graphics Processing Unit (GPU). We also present another algorithm, C_LOF, based on a very popular and effective outlier detection algorithm called Local Outlier Factor (LOF) which unfortunately works only on batched data. Using a novel incremental approach that compensates the drawback of high complexity in LOF, we show how to implement it in a streaming context and to obtain results in a timely manner. Like C_KDE_WR, C_LOF also employs sliding-window and statistical-summary to help making decision based on the data in the current window. It also addresses all those challenges of streaming data as addressed in C_KDE_WR. In addition, we report the comparative evaluation on the accuracy of C_KDE_WR with the state-of-the-art SOD_GPU using Precision, Recall and F-score metrics. Furthermore, a t-test is also performed to demonstrate the significance of the improvement. We further report the testing results of C_LOF on different parameter settings and drew ROC and PR curve with their area under the curve (AUC) and Average Precision (AP) values calculated respectively. Experimental results show that C_LOF can overcome the masquerading problem, which often exists in outlier detection on streaming data. We provide complexity analysis and report experiment results on the accuracy of both C_KDE_WR and C_LOF algorithms in order to evaluate their effectiveness as well as their efficiencies.