MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Impact of Storm Size on Prediction of Storm Track and Intensity Using the 2016 Operational GFDL Hurricane Model
Impact of Storm Size on Prediction of Storm Track and Intensity Using the 2016 Operational GFDL Hurricane Model
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Impact of Storm Size on Prediction of Storm Track and Intensity Using the 2016 Operational GFDL Hurricane Model
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Impact of Storm Size on Prediction of Storm Track and Intensity Using the 2016 Operational GFDL Hurricane Model
Impact of Storm Size on Prediction of Storm Track and Intensity Using the 2016 Operational GFDL Hurricane Model

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Impact of Storm Size on Prediction of Storm Track and Intensity Using the 2016 Operational GFDL Hurricane Model
Impact of Storm Size on Prediction of Storm Track and Intensity Using the 2016 Operational GFDL Hurricane Model
Journal Article

Impact of Storm Size on Prediction of Storm Track and Intensity Using the 2016 Operational GFDL Hurricane Model

2017
Request Book From Autostore and Choose the Collection Method
Overview
The impact of storm size on the forecast of tropical cyclone storm track and intensity is investigated using the 2016 version of the operational GFDL hurricane model. Evaluation was made for 1529 forecasts in the Atlantic, eastern Pacific, and western North Pacific basins, during the 2014 and 2015 seasons. The track and intensity errors were computed from forecasts in which the 34-kt (where 1 kt = 0.514 m s−1) wind radii obtained from the operational TC vitals that are used to initialize TCs in the GFDL model were replaced with wind radii estimates derived using an equally weighted average of six objective estimates. It was found that modifying the radius of 34-kt winds had a significant positive impact on the intensity forecasts in the 1–2 day lead times. For example, at 48 h, the intensity error was reduced 10%, 5%, and 4% in the Atlantic, eastern Pacific, and western North Pacific, respectively. The largest improvements in intensity forecasts were for those tropical cyclones undergoing rapid intensification, with a maximum error reduction in the 1–2 day forecast lead time of 14% and 17% in the eastern and western North Pacific, respectively. The large negative intensity biases in the eastern and western North Pacific were also reduced 25% and 75% in the 12–72-h forecast lead times. Although the overall impact on the average track error was neutral, forecasts of recurving storms were improved and tracks of nonrecurving storms degraded. Results also suggest that objective specification of storm size may impact intensity forecasts in other high-resolution numerical models, particularly for tropical cyclones entering a rapid intensification phase.

MBRLCatalogueRelatedBooks