Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
A Data Mining Method for Students' Behavior Understanding
by
Na, Wei
in
Behavior Patterns
/ Distance learning
/ Electronic Learning
/ Student behavior
2020
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Data Mining Method for Students' Behavior Understanding
by
Na, Wei
in
Behavior Patterns
/ Distance learning
/ Electronic Learning
/ Student behavior
2020
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Journal Article
A Data Mining Method for Students' Behavior Understanding
2020
Request Book From Autostore
and Choose the Collection Method
Overview
To model students' behavior and describe their behavior characteristics accurately and comprehensively, a framework for predicting students' learning performance based on behavioral model is proposed, which extracts features from multiple perspectives to describe behaviors more comprehensively, including statistical features and association features. In addition, a multi-task model is designed for fine-grained prediction of students' learning performance in the curriculum. A framework for predicting mastery based on online learning behavior is also put forward. Additional context information is added to the collaborative filtering algorithm, including student-knowledge-point mastery and class-knowledge-point, and students' mastery is predicted according to the learning path excavated. Considering the time-varying of mastery, the approximate curve of students' mastery of knowledge points is fitted according to the Ebinhaus forgetting curve. The experiments show that the proposed framework has a high recall rate for the prediction of learning performance, and also shows a certain practicability for early warning. Further, based on the model, the correlation between student behavior patterns and learning performance is discussed. The addition of additional information has improved the prediction efficiency, especially the operational efficiency. At the same time, the proposed framework can not only dynamically assess students' master of knowledge, but also facilitate the system to review feedback or adjust the learning order, and provide personalized learning services.
Publisher
International Association of Online Engineering (IAOE)
This website uses cookies to ensure you get the best experience on our website.