MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Photo-responsive shape memory polymer composites enabled by doping with biomass-derived carbon nanomaterials
Photo-responsive shape memory polymer composites enabled by doping with biomass-derived carbon nanomaterials
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Photo-responsive shape memory polymer composites enabled by doping with biomass-derived carbon nanomaterials
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Photo-responsive shape memory polymer composites enabled by doping with biomass-derived carbon nanomaterials
Photo-responsive shape memory polymer composites enabled by doping with biomass-derived carbon nanomaterials

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Photo-responsive shape memory polymer composites enabled by doping with biomass-derived carbon nanomaterials
Photo-responsive shape memory polymer composites enabled by doping with biomass-derived carbon nanomaterials
Journal Article

Photo-responsive shape memory polymer composites enabled by doping with biomass-derived carbon nanomaterials

2022
Request Book From Autostore and Choose the Collection Method
Overview
As photothermal conversion agents, carbon nanomaterials are widely applied in polymers for light-triggered shape memory behaviors on account of their excellent light absorption. However, they are usually derived from non-renewable fossil resources, which go against the demand for sustainable development. Biomass-derived carbon nanomaterials are expected as alternatives if they are designed with good dispersibility as well as splendid photothermal properties. Up to date, very few researches focused on this area. Herein, we report a novel light-triggered shape memory composite by incorporating renewable biomass-derived carbon nanomaterials into acrylate polymers without deep purification and processing. These functionalized carbon nanomaterials not only have stable dispersion in polymers as fillers, but also can endow the polymers with excellent and stable thermal and photothermal responsive properties in biological friendly environment. With the introduction of biomass-derived carbon nanomaterials, the mechanical properties of the composites are also further enhanced with the formation of hydrogen bonding between the carbon nanomaterials and the polymers. Notably, the doping of 1% carbon nanomaterials endows the polymer with sufficient hydrogen bonds that not only exhibit excellent thermal and photothermal responsive properties, but also with enough space for the motion of chains. These properties make such composite a promising and safe candidate for shape memory applications, which provide a new avenue in smart fabrics or intelligent soft robotics.