MbrlCatalogueTitleDetail

Do you wish to reserve the book?
GENERALIZED RANDOM FORESTS
GENERALIZED RANDOM FORESTS
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
GENERALIZED RANDOM FORESTS
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
GENERALIZED RANDOM FORESTS
GENERALIZED RANDOM FORESTS

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
GENERALIZED RANDOM FORESTS
Journal Article

GENERALIZED RANDOM FORESTS

2019
Request Book From Autostore and Choose the Collection Method
Overview
We propose generalized random forests, a method for nonparametric statistical estimation based on random forests (Breiman [Mach. Learn. 45 (2001) 5–32]) that can be used to fit any quantity of interest identified as the solution to a set of local moment equations. Following the literature on local maximum likelihood estimation, our method considers a weighted set of nearby training examples; however, instead of using classical kernel weighting functions that are prone to a strong curse of dimensionality, we use an adaptive weighting function derived from a forest designed to express heterogeneity in the specified quantity of interest. We propose a flexible, computationally efficient algorithm for growing generalized random forests, develop a large sample theory for our method showing that our estimates are consistent and asymptotically Gaussian and provide an estimator for their asymptotic variance that enables valid confidence intervals. We use our approach to develop new methods for three statistical tasks: nonparametric quantile regression, conditional average partial effect estimation and heterogeneous treatment effect estimation via instrumental variables. A software implementation, grf for R and C++, is available from CRAN.