MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Reliability estimation in a multicomponent stress–strength based on unit-Gompertz distribution
Reliability estimation in a multicomponent stress–strength based on unit-Gompertz distribution
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Reliability estimation in a multicomponent stress–strength based on unit-Gompertz distribution
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Reliability estimation in a multicomponent stress–strength based on unit-Gompertz distribution
Reliability estimation in a multicomponent stress–strength based on unit-Gompertz distribution

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Reliability estimation in a multicomponent stress–strength based on unit-Gompertz distribution
Reliability estimation in a multicomponent stress–strength based on unit-Gompertz distribution
Journal Article

Reliability estimation in a multicomponent stress–strength based on unit-Gompertz distribution

2020
Request Book From Autostore and Choose the Collection Method
Overview
Purpose The purpose of this paper is to estimate the multicomponent reliability by assuming the unit-Gompertz (UG) distribution. Both stress and strength are assumed to have an UG distribution with common scale parameter. Design/methodology/approach The reliability of a multicomponent stress–strength system is obtained by the maximum likelihood (MLE) and Bayesian method of estimation. Bayes estimates of system reliability are obtained by using Lindley’s approximation and Metropolis–Hastings (M–H) algorithm methods when all the parameters are unknown. The highest posterior density credible interval is obtained by using M–H algorithm method. Besides, uniformly minimum variance unbiased estimator and exact Bayes estimates of system reliability have been obtained when the common scale parameter is known and the results are compared for both small and large samples. Findings Based on the simulation results, the authors observe that Bayes method provides better estimation results as compared to MLE. Proposed asymptotic and HPD intervals show satisfactory coverage probabilities. However, average length of HPD intervals tends to remain shorter than the corresponding asymptotic interval. Overall the authors have observed that better estimates of the reliability may be achieved when the common scale parameter is known. Originality/value Most of the lifetime distributions used in reliability analysis, such as exponential, Lindley, gamma, lognormal, Weibull and Chen, only exhibit constant, monotonically increasing, decreasing and bathtub-shaped hazard rates. However, in many applications in reliability and survival analysis, the most realistic hazard rates are upside-down bathtub and bathtub-shaped, which are found in the unit-Gompertz distribution. Furthermore, when reliability is measured as percentage or ratio, it is important to have models defined on the unit interval in order to have plausible results. Therefore, the authors have studied the multicomponent stress–strength reliability under the unit-Gompertz distribution by comparing the MLEs, Bayes estimators and UMVUEs.

MBRLCatalogueRelatedBooks