MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Elucidating the Mechanisms of Chrysanthemum Action on Atopic Dermatitis via Network Pharmacology and Machine Learning
Elucidating the Mechanisms of Chrysanthemum Action on Atopic Dermatitis via Network Pharmacology and Machine Learning
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Elucidating the Mechanisms of Chrysanthemum Action on Atopic Dermatitis via Network Pharmacology and Machine Learning
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Elucidating the Mechanisms of Chrysanthemum Action on Atopic Dermatitis via Network Pharmacology and Machine Learning
Elucidating the Mechanisms of Chrysanthemum Action on Atopic Dermatitis via Network Pharmacology and Machine Learning

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Elucidating the Mechanisms of Chrysanthemum Action on Atopic Dermatitis via Network Pharmacology and Machine Learning
Elucidating the Mechanisms of Chrysanthemum Action on Atopic Dermatitis via Network Pharmacology and Machine Learning
Journal Article

Elucidating the Mechanisms of Chrysanthemum Action on Atopic Dermatitis via Network Pharmacology and Machine Learning

2025
Request Book From Autostore and Choose the Collection Method
Overview
Chrysanthemum (Chrysanthemum morifolium Ramat.) has been recognized as both a food and medicinal substance in China since 2002 and possesses antioxidant, anti-inflammatory, antibacterial, and immunomodulatory activities. Previous studies suggest that Chrysanthemum may alleviate skin lesions resembling atopic dermatitis (AD); however, its underlying mechanisms remain unclear. In this study, we integrated network pharmacology and machine learning to systematically explore the potential mechanisms of Chrysanthemum in AD treatment. Four algorithms—Random Forest (RF), Lasso regression with cross-validation (LassoCV), Elastic Net (EN), and Extreme Gradient Boosting (XGB)—were compared, among which the XGB model achieved the best performance (accuracy = 0.9393). Further analysis identified 15 optimal features, two core targets (PTGS2 and MMP9), and one critical pathway (NF-κB signaling). To experimentally validate these findings, HaCaT keratinocytes were co-stimulated with TNF-α and IFN-γ to establish an in vitro inflammatory model, and co-treatment with three major flavonoids from Chrysanthemum—Acacetin, Diosmetin, and Chryseriol—significantly suppressed cytokine-induced COX-2 overexpression and reduced NF-κB p65 phosphorylation, confirming their inhibitory effects on NF-κB activation. These results were consistent with molecular docking and dynamics simulations, which demonstrated that these flavonoids, along with celecoxib, could stably bind to COX-2, thereby enhancing system stability and reducing residue fluctuations at the binding interface, revealing the molecular basis by which Chrysanthemum alleviates AD and supporting its modernization and therapeutic potential.