MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Porous plasticity modeling of local necking in sheet metals
Porous plasticity modeling of local necking in sheet metals
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Porous plasticity modeling of local necking in sheet metals
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Porous plasticity modeling of local necking in sheet metals
Porous plasticity modeling of local necking in sheet metals

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Porous plasticity modeling of local necking in sheet metals
Porous plasticity modeling of local necking in sheet metals
Journal Article

Porous plasticity modeling of local necking in sheet metals

2024
Request Book From Autostore and Choose the Collection Method
Overview
Sheet metals subjected to biaxial plane stress loading typically fail due to localized necking in the thickness direction. Classical plasticity models using a smooth yield surface and the normality flow rule cannot predict localized necking at realistic strain levels when both the in-plane principal strains are tensile. In this paper, a recently developed multi-surface model for porous metal plasticity is used to show that the development of vertices on the yield surface at finite strains due to microscopic void growth, and the resulting deviations from plastic flow normality, can result in realistic predictions for the limit strains under biaxial tensile loadings. The shapes of the forming limit curves predicted using an instability analysis are in qualitative agreement with experiments. The effect of constitutive features such as strain hardening and void nucleation on the predicted ductility are discussed.