MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Improved two-stage implicit time integration methods with unconventionally determined parameters for analyses of linear and nonlinear structural dynamics
Improved two-stage implicit time integration methods with unconventionally determined parameters for analyses of linear and nonlinear structural dynamics
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Improved two-stage implicit time integration methods with unconventionally determined parameters for analyses of linear and nonlinear structural dynamics
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Improved two-stage implicit time integration methods with unconventionally determined parameters for analyses of linear and nonlinear structural dynamics
Improved two-stage implicit time integration methods with unconventionally determined parameters for analyses of linear and nonlinear structural dynamics

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Improved two-stage implicit time integration methods with unconventionally determined parameters for analyses of linear and nonlinear structural dynamics
Improved two-stage implicit time integration methods with unconventionally determined parameters for analyses of linear and nonlinear structural dynamics
Journal Article

Improved two-stage implicit time integration methods with unconventionally determined parameters for analyses of linear and nonlinear structural dynamics

2024
Request Book From Autostore and Choose the Collection Method
Overview
In this article, a simple way to determine algorithmic parameters included in time approximations of two-stage implicit time schemes is presented. To be specific, algorithmic parameters of time approximations are mathematically determined to give higher-order total energy convergence rates for conservative nonlinear problems while satisfying traditional linear accuracy requirements. Due to the use of newly proposed algorithmic parameters, two-stage implicit time schemes can possess enhanced total energy conserving capabilities for conservative nonlinear problems while providing improved linear performances when compared with those of the existing two-stage time schemes. Enhanced total energy conserving capabilities achieved through the use of newly proposed algorithmic parameters do not require any additional computational efforts when compared with the existing two-stage schemes. This article also explains that a certain standard type of two-stage implicit time schemes can reduce computational time and effort in linear analyses if effective coefficient matrices of the first and second stages are constructed identically. For the verification of improved numerical performances, linear and nonlinear benchmark problems are solved, and their numerical results are investigated to support the main discussions of this article.