MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Modeling and monitoring the material removal rate of abrasive belt grinding based on vision measurement and the gene expression programming (GEP) algorithm
Modeling and monitoring the material removal rate of abrasive belt grinding based on vision measurement and the gene expression programming (GEP) algorithm
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Modeling and monitoring the material removal rate of abrasive belt grinding based on vision measurement and the gene expression programming (GEP) algorithm
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Modeling and monitoring the material removal rate of abrasive belt grinding based on vision measurement and the gene expression programming (GEP) algorithm
Modeling and monitoring the material removal rate of abrasive belt grinding based on vision measurement and the gene expression programming (GEP) algorithm

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Modeling and monitoring the material removal rate of abrasive belt grinding based on vision measurement and the gene expression programming (GEP) algorithm
Modeling and monitoring the material removal rate of abrasive belt grinding based on vision measurement and the gene expression programming (GEP) algorithm
Journal Article

Modeling and monitoring the material removal rate of abrasive belt grinding based on vision measurement and the gene expression programming (GEP) algorithm

2022
Request Book From Autostore and Choose the Collection Method
Overview
Accurately predicting the material removal rate (MRR) in belt grinding is challenging because of the randomly distributed multiple cutting edges, flexible contact, and continuous wear of the abrasive grains, undermining the ability to achieve the expected machining requirements for belt grinding using the planned parameters. With the development of sensing technology, big data, and intelligent algorithms, online identification methods for material removal through sensing signals have gained traction. A vision-based material removal monitoring method in the belt grinding process was investigated by adopting the gene expression programming (GEP) algorithm. First, the relationship between the grinding parameters and MRR was investigated through a series of experiments. Second, methods of image shooting distance calibration and automatic image segmentation were established. Furthermore, the definition and quantification method of 11 features related to the color, texture, and energy of spark images are described, based on which the features are extracted. Then, the optimal feature subset was determined by analyzing the fluctuation degree and correlation with MRR by computing the coefficient of variation of the features and Pearson’s coefficient of features and MRR, respectively. Finally, a continuous function model including the selected features was obtained using the GEP method. The predicted results and testing time were compared with those of other methods such as LightGBM, convolutional neural network (CNN), support vector regression (SVR), and BP neural network. The results show that the MRR prediction model based on the GEP algorithm can obtain explicit function expressions and is highly effective in predicting accuracy and test time, which is of utmost significance for accurate and efficient acquisition of MRR data online.