MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Biogeochemistry of Earth before exoenzymes
Biogeochemistry of Earth before exoenzymes
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Biogeochemistry of Earth before exoenzymes
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Biogeochemistry of Earth before exoenzymes
Biogeochemistry of Earth before exoenzymes

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Biogeochemistry of Earth before exoenzymes
Biogeochemistry of Earth before exoenzymes
Journal Article

Biogeochemistry of Earth before exoenzymes

2023
Request Book From Autostore and Choose the Collection Method
Overview
Microorganisms that transform and oxidize organic material (that is, heterotrophs) play a fundamental role in the geochemical cycling of key elements in the ocean. Through their growth and activity, heterotrophic microorganisms degrade much of the organic matter produced by phytoplankton in the surface ocean, leading to the regeneration and redistribution of nutrients and carbon back into the water column. However, most organic matter is physically too large to be taken up directly by heterotrophic microorganisms. Consequently, many heterotrophs secrete exoenzymes that break down large molecules outside the cell into smaller substrates that can then be directly taken up by the cell. The complex nature of the biochemical systems that microorganisms use to secrete these enzymes suggests that they were unlikely to have been present in the earliest heterotrophs. In a pre-exoenzyme ocean, heterotrophic microorganisms would only be able to access a small fraction of organic matter such that most dead phytoplankton biomass would have passed directly through the water column and settled onto the seafloor. Here we synthesize existing geobiological evidence to examine the fate of organic matter in the absence of exoenzymes in early oceans. We propose that on an Earth before exoenzymes, organic matter preservation, metal availability and phosphorus recycling would have operated differently than they do on the contemporary Earth.Exoenzymes produced by heterotrophic microorganisms early in Earth history helped unlock previously unavailable organic matter and transformed ocean geochemistry.