MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Parallel FP-Growth Mining Algorithm with Load Balancing Constraints for Traffic Crash Data
A Parallel FP-Growth Mining Algorithm with Load Balancing Constraints for Traffic Crash Data
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Parallel FP-Growth Mining Algorithm with Load Balancing Constraints for Traffic Crash Data
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Parallel FP-Growth Mining Algorithm with Load Balancing Constraints for Traffic Crash Data
A Parallel FP-Growth Mining Algorithm with Load Balancing Constraints for Traffic Crash Data

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Parallel FP-Growth Mining Algorithm with Load Balancing Constraints for Traffic Crash Data
A Parallel FP-Growth Mining Algorithm with Load Balancing Constraints for Traffic Crash Data
Journal Article

A Parallel FP-Growth Mining Algorithm with Load Balancing Constraints for Traffic Crash Data

2022
Request Book From Autostore and Choose the Collection Method
Overview
Traffic safety is an important part of the roadway in sustainable development. Freeway traffic crashes typically cause serious casualties and property losses, being a serious threat to public safety. Figuring out the potential correlation between various risk factors and revealing their coupling mechanisms are of effective ways to explore and identity freeway crash causes. However, the existing association rule mining algorithms still have some limitations in both efficiency and accuracy. Based on this consideration, using the freeway traffic crash data obtained from WDOT (Washington Department of Transportation), this research constructed a multi-dimensional multilevel system for traffic crash analysis. Considering the load balancing, the FP-Growth (Frequent Pattern- Growth) algorithm was optimized parallelly based on Hadoop platform, to achieve an efficient and accurate association rule mining calculation for massive amounts of traffic crash data; then, according to the results of the coupling mechanism among the crash precursors, the causes of freeway traffic crashes were identified and revealed. The results show that the parallel FPgrowth algorithm with load balancing constraints has a better operating speed than both the conventional FP-growth algorithm and parallel FP-growth algorithm towards processing big data. This improved algorithm makes full use of Hadoop cluster resources and is more suitable for large traffic crash data sets mining while retaining the original advantages of conventional association rule mining algorithm. In addition, the mining association rules model with the improvement of multi-dimensional interaction proposed in this research can catch the occurrence mechanism of freeway traffic crash with serious consequences (lower support degree probably) accurately and efficiently.