MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Hydrogen Ionization Inside the Sun
Hydrogen Ionization Inside the Sun
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Hydrogen Ionization Inside the Sun
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Hydrogen Ionization Inside the Sun
Hydrogen Ionization Inside the Sun

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Hydrogen Ionization Inside the Sun
Hydrogen Ionization Inside the Sun
Journal Article

Hydrogen Ionization Inside the Sun

2025
Request Book From Autostore and Choose the Collection Method
Overview
Hydrogen is the main chemical component of the solar plasma, and H-ionization determines basic properties of the first adiabatic exponent Γ 1 . Its ionization significantly differs from the ionization of other chemicals. Due to the large number concentration, H-ionization causes a pronounced lowering of Γ 1 , with a strongly asymmetric and extending across almost the entire solar convective zone. The excited states in the hydrogen atom are modeled using a partition function, which accounts for the internal degrees of freedom of the composite particle. A temperature-dependent partition function with an asymptotic cut-off tail is derived from the quantum mechanical solution for the hydrogen atom in the plasma. We present numerical simulations of hydrogen ionization, calculated using two partition function models: Planck-Larkin (PL) and Starostin-Roerich (SR). In the SR model, the hydrogen ionization shifts to higher temperatures than in the PL model. Different models for excited states of the hydrogen atom may change Γ 1 by as much as 10 − 2 . The Γ 1 profiles for pure hydrogen exhibit a “twisted rope” structure for the two models, significantly affecting the helium ionization and the position of the helium hump. This entanglement of H and He effect provides a valuable opportunity to investigate the role of excited states in the solar plasma.