Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
A distributed one-step estimator
by
Huo, Xiaoming
, Huang, Cheng
in
Asymptotic properties
/ Communication
/ Economic models
/ Estimating techniques
/ Mathematical programming
/ Normality
/ Statistical inference
/ Upper bounds
2019
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A distributed one-step estimator
by
Huo, Xiaoming
, Huang, Cheng
in
Asymptotic properties
/ Communication
/ Economic models
/ Estimating techniques
/ Mathematical programming
/ Normality
/ Statistical inference
/ Upper bounds
2019
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Journal Article
A distributed one-step estimator
2019
Request Book From Autostore
and Choose the Collection Method
Overview
Distributed statistical inference has recently attracted enormous attention. Many existing work focuses on the averaging estimator, e.g., Zhang and Duchi (J Mach Learn Res 14:3321–3363, 2013) together with many others. We propose a one-step approach to enhance a simple-averaging based distributed estimator by utilizing a single Newton–Raphson updating. We derive the corresponding asymptotic properties of the newly proposed estimator. We find that the proposed one-step estimator enjoys the same asymptotic properties as the idealized centralized estimator. In particular, the asymptotic normality was established for the proposed estimator, while other competitors may not enjoy the same property. The proposed one-step approach merely requires one additional round of communication in relative to the averaging estimator; so the extra communication burden is insignificant. The proposed one-step approach leads to a lower upper bound of the mean squared error than other alternatives. In finite sample cases, numerical examples show that the proposed estimator outperforms the simple averaging estimator with a large margin in terms of the sample mean squared error. A potential application of the one-step approach is that one can use multiple machines to speed up large scale statistical inference with little compromise in the quality of estimators. The proposed method becomes more valuable when data can only be available at distributed machines with limited communication bandwidth.
Publisher
Springer Nature B.V
This website uses cookies to ensure you get the best experience on our website.