MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Fractional stars
Fractional stars
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Fractional stars
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Fractional stars
Fractional stars

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Fractional stars
Journal Article

Fractional stars

2024
Request Book From Autostore and Choose the Collection Method
Overview
This study examines the possibility of starting the process of collapsing and forming stars from a fractional molecular cloud. Although the Verlinde’s approach is employed to derive the corresponding gravitational potential, the results are easily generalizable to other gravitational potential proposals for fractional systems. It is due to the fact that the different methods, despite the difference in the details of results, all obtain power forms for the potential in terms of radius. An essential result of this analysis is the derivation of the corresponding Jeans mass limit, which is a crucial parameter in understanding the formation of stars. The study shows that the Jeans mass of a cloud in fractional gravity is much smaller than the traditional value. In addition, the study also determines the burning temperature of the resulting star using the Gamow theory. This calculation provides insight into the complex processes that govern the evolution of these celestial bodies. Finally, the study briefly discusses the investigation of hydrostatic equilibrium, a crucial condition that ensures the stability of these fractional stars. It also addresses the corresponding Lane–Emden equation, which is pivotal in understanding this equilibrium.