Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Efficient Graph-Based Image Segmentation
by
Felzenszwalb, Pedro F.
, Huttenlocher, Daniel P.
in
Algorithms
/ Studies
2004
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Efficient Graph-Based Image Segmentation
by
Felzenszwalb, Pedro F.
, Huttenlocher, Daniel P.
in
Algorithms
/ Studies
2004
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Journal Article
Efficient Graph-Based Image Segmentation
2004
Request Book From Autostore
and Choose the Collection Method
Overview
This paper addresses the problem of segmenting an image into regions. We define a predicate for measuring the evidence for a boundary between two regions using a graph-based representation of the image. We then develop an efficient segmentation algorithm based on this predicate, and show that although this algorithm makes greedy decisions it produces segmentations that satisfy global properties. We apply the algorithm to image segmentation using two different kinds of local neighborhoods in constructing the graph, and illustrate the results with both real and synthetic images. The algorithm runs in time nearly linear in the number of graph edges and is also fast in practice. An important characteristic of the method is its ability to preserve detail in low-variability image regions while ignoring detail in high-variability regions.[PUBLICATION ABSTRACT]
Publisher
Springer Nature B.V
Subject
This website uses cookies to ensure you get the best experience on our website.