MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Operation of networked multi-carrier microgrid considering demand response
Operation of networked multi-carrier microgrid considering demand response
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Operation of networked multi-carrier microgrid considering demand response
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Operation of networked multi-carrier microgrid considering demand response
Operation of networked multi-carrier microgrid considering demand response

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Operation of networked multi-carrier microgrid considering demand response
Operation of networked multi-carrier microgrid considering demand response
Journal Article

Operation of networked multi-carrier microgrid considering demand response

2019
Request Book From Autostore and Choose the Collection Method
Overview
Purpose Microgrids are inclined to use renewable energy resources within the availability limits. In conventional studies, energy interchange among microgrids was not considered because of one-directional power flows. Hence, this paper aims to study the optimal day-ahead energy scheduling of a centralized networked multi-carrier microgrid (NMCMG). The energy scheduling faces new challenges by inclusion of responsive loads, integration of renewable sources (wind and solar) and interaction of multi-carrier microgrids (MCMGs). Design/methodology/approach The optimization model is formulated as a mixed integer nonlinear programing and is solved using GAMS software. Numerical simulations are performed on a system with three MCMGs, including combined heat and power, photovoltaic arrays, wind turbines and energy storages to fulfill the required electrical and thermal load demands. In the proposed system, the MCMGs are in grid-connected mode to exchange power when required. Findings The proposed model is capable of minimizing the system costs by using a novel demand side management model and integrating the multiple-energy infrastructure, as well as handling the energy management of the network. Furthermore, the novel demand side management model gives more accurate optimal results. The operational performance and total cost of the NMCMG in simultaneous operation of multiple carriers has been effectively improved. Originality/value Introduction and modeling of the multiple energy demands within the MCMG. A novel time- and incentive-based demand side management, characterized by shifting techniques, is applied to reshape the load curve, as well as for preventing the excessive use of energy in peak hours. This paper analyzes the need to study how inclusion of multiple energy infrastructure integration and responsive load can impact the future distribution network costs.