MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Spectral gaps without the pressure condition
Spectral gaps without the pressure condition
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Spectral gaps without the pressure condition
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Spectral gaps without the pressure condition
Spectral gaps without the pressure condition

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Spectral gaps without the pressure condition
Spectral gaps without the pressure condition
Journal Article

Spectral gaps without the pressure condition

2018
Request Book From Autostore and Choose the Collection Method
Overview
For all convex co-compact hyperbolic surfaces, we prove the existence of an essential spectral gap, that is, a strip beyond the unitarity axis in which the Selberg zeta function has only finitely many zeroes. We make no assumption on the dimension δ of the limit set; in particular, we do not require the pressure condition δ ≤ 1/2. This is the first result of this kind for quantum Hamiltonians. Our proof follows the strategy developed by Dyatlov and Zahl. The main new ingredient is the fractal uncertainty principle for δ-regular sets with δ < 1, which may be of independent interest.