MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Submodular Function Maximization via the Multilinear Relaxation and Contention Resolution Schemes
Submodular Function Maximization via the Multilinear Relaxation and Contention Resolution Schemes
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Submodular Function Maximization via the Multilinear Relaxation and Contention Resolution Schemes
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Submodular Function Maximization via the Multilinear Relaxation and Contention Resolution Schemes
Submodular Function Maximization via the Multilinear Relaxation and Contention Resolution Schemes

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Submodular Function Maximization via the Multilinear Relaxation and Contention Resolution Schemes
Submodular Function Maximization via the Multilinear Relaxation and Contention Resolution Schemes
Journal Article

Submodular Function Maximization via the Multilinear Relaxation and Contention Resolution Schemes

2014
Request Book From Autostore and Choose the Collection Method
Overview
We consider the problem of maximizing a nonnegative submodular set function $f:2 perpendicular \\rightarrow {\\mathbb R}_+$ over a ground set $N$ subject to a variety of packing-type constraints including (multiple) matroid constraints, knapsack constraints, and their intersections. In this paper we develop a general framework that allows us to derive a number of new results, in particular, when $f$ may be a nonmonotone function. Our algorithms are based on (approximately) maximizing the multilinear extension $F$ of $f$ over a polytope $P$ that represents the constraints, and then effectively rounding the fractional solution. Although this approach has been used quite successfully, it has been limited in some important ways. We overcome these limitations as follows. First, we give constant factor approximation algorithms to maximize $F$ over a downward-closed polytope $P$ described by an efficient separation oracle. Previously this was known only for monotone functions. For nonmonotone functions, a constant factor was known only when the polytope was either the intersection of a fixed number of knapsack constraints or a matroid polytope. Second, we show that contention resolution schemes are an effective way to round a fractional solution, even when $f$ is nonmonotone. In particular, contention resolution schemes for different polytopes can be combined to handle the intersection of different constraints. Via linear programming duality we show that a contention resolution scheme for a constraint is related to the correlation gap of weighted rank functions of the constraint. This leads to an optimal contention resolution scheme for the matroid polytope. Our results provide a broadly applicable framework for maximizing linear and submodular functions subject to independence constraints. We give several illustrative examples. Contention resolution schemes may find other applications.