MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models
Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models
Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models
Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models
Journal Article

Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models

2017
Request Book From Autostore and Choose the Collection Method
Overview
Correct estimation of above-ground biomass (AGB) is necessary for accurate crop growth monitoring and yield prediction. We estimated AGB based on images obtained with a snapshot hyperspectral sensor (UHD 185 firefly, Cubert GmbH, Ulm, Baden-Württemberg, Germany) mounted on an unmanned aerial vehicle (UAV). The UHD 185 images were used to calculate the crop height and hyperspectral reflectance of winter wheat canopies from hyperspectral and panchromatic images. We constructed several single-parameter models for AGB estimation based on spectral parameters, such as specific bands, spectral indices (e.g., Ratio Vegetation Index (RVI), NDVI, Greenness Index (GI) and Wide Dynamic Range VI (WDRVI)) and crop height and several models combined with spectral parameters and crop height. Comparison with experimental results indicated that incorporating crop height into the models improved the accuracy of AGB estimations (the average AGB is 6.45 t/ha). The estimation accuracy of single-parameter models was low (crop height only: R2 = 0.50, RMSE = 1.62 t/ha, MAE = 1.24 t/ha; R670 only: R2 = 0.54, RMSE = 1.55 t/ha, MAE = 1.23 t/ha; NDVI only: R2 = 0.37, RMSE = 1.81 t/ha, MAE = 1.47 t/ha; partial least squares regression R2 = 0.53, RMSE = 1.69, MAE = 1.20), but accuracy increased when crop height and spectral parameters were combined (partial least squares regression modeling: R2 = 0.78, RMSE = 1.08 t/ha, MAE = 0.83 t/ha; verification: R2 = 0.74, RMSE = 1.20 t/ha, MAE = 0.96 t/ha). Our results suggest that crop height determined from the new UAV-based snapshot hyperspectral sensor can improve AGB estimation and is advantageous for mapping applications. This new method can be used to guide agricultural management.