MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Nitrous oxide emissions from agricultural fields: assessment, measurement and mitigation
Nitrous oxide emissions from agricultural fields: assessment, measurement and mitigation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Nitrous oxide emissions from agricultural fields: assessment, measurement and mitigation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Nitrous oxide emissions from agricultural fields: assessment, measurement and mitigation
Nitrous oxide emissions from agricultural fields: assessment, measurement and mitigation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Nitrous oxide emissions from agricultural fields: assessment, measurement and mitigation
Nitrous oxide emissions from agricultural fields: assessment, measurement and mitigation
Journal Article

Nitrous oxide emissions from agricultural fields: assessment, measurement and mitigation

1996
Request Book From Autostore and Choose the Collection Method
Overview
In this paper we discuss three topics concerning N₂O emissions from agricultural systems. First, we present an appraisal of N₂O emissions from agricultural soils (Assessment). Secondly, we discuss some recent efforts to improve N₂O flux estimates in agricultural fields (Measurement), and finally, we relate recent studies which use nitrification inhibitors to decrease N₂O emissions from N-fertilized fields (Mitigation). To assess the global emission of N₂O from agricultural soils, the total flux should represent N₂O from all possible sources; native soil N, N from recent atmospheric deposition, past years fertilization, N from crop residues, N₂O from subsurface aquifers below the study area, and current N fertilization. Of these N sources only synthetic fertilizer and animal manures and the area of fields cropped with legumes have sufficient global data to estimate their input for N₂O production. The assessment of direct and indirect N₂O emissions we present was made by multiplying the amount of fertilizer N applied to agricultural lands by 2% and the area of land cropped to legumes by 4 kg N₂O-N ha⁻¹. No regard to method of N application, type of N, crop, climate or soil was given in these calculations, because the data are not available to include these variables in large scale assessments. Improved assessments should include these variables and should be used to drive process models for field, area, region and global scales. Several N₂O flux measurement techniques have been used in recent field studies which utilize small and ultralarge chambers and micrometeorological along with new analytical techniques to measure N₂O fluxes. These studies reveal that it is not the measurement technique that is providing much of the uncertainty in N₂O flux values found in the literature but rather the diverse combinations of physical and biological factors which control gas fluxes. A careful comparison of published literature narrows the range of observed fluxes as noted in the section on assessment. An array of careful field studies which compare a series of crops, fertilizer sources, and management techniques in controlled parallel experiments throughout the calendar year are needed to improve flux estimates and decrease uncertainty in prediction capability. There are a variety of management techniques which should conserve N and decrease the amount of N application needed to grow crops and to limit N₂O emissions. Using nitrification inhibitors is an option for decreasing fertilizer N use and additionally directly mitigating N₂O emissions. Case studies are presented which demonstrate the potential for using nitrification inhibitors to limit N₂O emissions from agricultural soils. Inhibitors may be selected for climatic conditions and type of cropping system as well as the type of nitrogen (solid mineral N, mineral N in solution, or organic waste materials) and applied with the fertilizers.