Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Mapping the Land Cover of Africa at 10 m Resolution from Multi-Source Remote Sensing Data with Google Earth Engine
by
Ma, Lei
, Schmitt, Michael
, Li, Qingyu
, Qiu, Chunping
, Zhu, Xiao
in
land cover mapping
/ multi-source data
/ sentinel-2
/ transferability
2020
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Mapping the Land Cover of Africa at 10 m Resolution from Multi-Source Remote Sensing Data with Google Earth Engine
by
Ma, Lei
, Schmitt, Michael
, Li, Qingyu
, Qiu, Chunping
, Zhu, Xiao
in
land cover mapping
/ multi-source data
/ sentinel-2
/ transferability
2020
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Mapping the Land Cover of Africa at 10 m Resolution from Multi-Source Remote Sensing Data with Google Earth Engine
Journal Article
Mapping the Land Cover of Africa at 10 m Resolution from Multi-Source Remote Sensing Data with Google Earth Engine
2020
Request Book From Autostore
and Choose the Collection Method
Overview
The remote sensing based mapping of land cover at extensive scales, e.g., of whole continents, is still a challenging task because of the need for sophisticated pipelines that combine every step from data acquisition to land cover classification. Utilizing the Google Earth Engine (GEE), which provides a catalog of multi-source data and a cloud-based environment, this research generates a land cover map of the whole African continent at 10 m resolution. This land cover map could provide a large-scale base layer for a more detailed local climate zone mapping of urban areas, which lie in the focus of interest of many studies. In this regard, we provide a free download link for our land cover maps of African cities at the end of this paper. It is shown that our product has achieved an overall accuracy of 81% for five classes, which is superior to the existing 10 m land cover product FROM-GLC10 in detecting urban class in city areas and identifying the boundaries between trees and low plants in rural areas. The best data input configurations are carefully selected based on a comparison of results from different input sources, which include Sentinel-2, Landsat-8, Global Human Settlement Layer (GHSL), Night Time Light (NTL) Data, Shuttle Radar Topography Mission (SRTM), and MODIS Land Surface Temperature (LST). We provide a further investigation of the importance of individual features derived from a Random Forest (RF) classifier. In order to study the influence of sampling strategies on the land cover mapping performance, we have designed a transferability analysis experiment, which has not been adequately addressed in the current literature. In this experiment, we test whether trained models from several cities contain valuable information to classify a different city. It was found that samples of the urban class have better reusability than those of other natural land cover classes, i.e., trees, low plants, bare soil or sand, and water. After experimental evaluation of different land cover classes across different cities, we conclude that continental land cover mapping results can be considerably improved when training samples of natural land cover classes are collected and combined from areas covering each Köppen climate zone.
Publisher
MDPI AG
Subject
This website uses cookies to ensure you get the best experience on our website.