Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Deep learning for post-processing ensemble weather forecasts
by
Yao, Chengyuan
, Ben-Nun, Tal
, Li, Shigang
, Hoefler, Torsten
, Grönquist, Peter
, Dueben, Peter
, Dryden, Nikoli
2021
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Deep learning for post-processing ensemble weather forecasts
by
Yao, Chengyuan
, Ben-Nun, Tal
, Li, Shigang
, Hoefler, Torsten
, Grönquist, Peter
, Dueben, Peter
, Dryden, Nikoli
2021
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Deep learning for post-processing ensemble weather forecasts
Journal Article
Deep learning for post-processing ensemble weather forecasts
2021
Request Book From Autostore
and Choose the Collection Method
Overview
Quantifying uncertainty in weather forecasts is critical, especially for predicting extreme weather events. This is typically accomplished with ensemble prediction systems, which consist of many perturbed numerical weather simulations, or trajectories, run in parallel. These systems are associated with a high computational cost and often involve statistical post-processing steps to inexpensively improve their raw prediction qualities. We propose a mixed model that uses only a subset of the original weather trajectories combined with a post-processing step using deep neural networks. These enable the model to account for non-linear relationships that are not captured by current numerical models or post-processing methods. Applied to the global data, our mixed models achieve a relative improvement in ensemble forecast skill (CRPS) of over 14%. Furthermore, we demonstrate that the improvement is larger for extreme weather events on select case studies. We also show that our post-processing can use fewer trajectories to achieve comparable results to the full ensemble. By using fewer trajectories, the computational costs of an ensemble prediction system can be reduced, allowing it to run at higher resolution and produce more accurate forecasts.
This article is part of the theme issue ‘Machine learning for weather and climate modelling’.
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.