MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Numerical investigation of entropy generation in laminar forced convection flow over inclined backward and forward facing steps in a duct under bleeding condition
Numerical investigation of entropy generation in laminar forced convection flow over inclined backward and forward facing steps in a duct under bleeding condition
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Numerical investigation of entropy generation in laminar forced convection flow over inclined backward and forward facing steps in a duct under bleeding condition
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Numerical investigation of entropy generation in laminar forced convection flow over inclined backward and forward facing steps in a duct under bleeding condition
Numerical investigation of entropy generation in laminar forced convection flow over inclined backward and forward facing steps in a duct under bleeding condition

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Numerical investigation of entropy generation in laminar forced convection flow over inclined backward and forward facing steps in a duct under bleeding condition
Numerical investigation of entropy generation in laminar forced convection flow over inclined backward and forward facing steps in a duct under bleeding condition
Journal Article

Numerical investigation of entropy generation in laminar forced convection flow over inclined backward and forward facing steps in a duct under bleeding condition

2014
Request Book From Autostore and Choose the Collection Method
Overview
A numerical investigation of entropy generation in laminar forced convection of gas flow over a recess including two inclined backward and forward facing steps in a horizontal duct under bleeding condition is presented. For calculation of entropy generation from the second law of thermodynamics in a forced convection flow, the velocity and temperature distributions are primary needed. For this purpose, the two-dimensional Cartesian coordinate system is used to solve the governing equations which are conservations of mass, momentum and energy. These equations are solved numerically using the computational fluid dynamic techniques to obtain the temperature and velocity fields, while the blocked region method is employed to simulate the inclined surface. Discretized forms of these equations are obtained by the finite volume method and solved using the SIMPLE algorithm. The numerical results are presented graphically and the effects of bleeding coefficient and recess length as the main parameters on the distributions of entropy generation number and Bejan number are investigated. Also, the effect of Reynolds number and bleeding coefficient on total entropy generation which shows the amount of flow irreversibilities is presented for two recess length. The use of present results in the design process of such thermal system would help the system attain the high performance during exploitation. Comparison of numerical results with the available data published in open literature shows a good consistency. nema

MBRLCatalogueRelatedBooks