MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Acoustic flow in porous media
Acoustic flow in porous media
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Acoustic flow in porous media
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Acoustic flow in porous media
Acoustic flow in porous media

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Acoustic flow in porous media
Journal Article

Acoustic flow in porous media

2021
Request Book From Autostore and Choose the Collection Method
Overview
We calculate the steady acoustic flow – the steady drift of fluid mass or acoustic streaming appearing along the path of an acoustic stimulus – in porous media. In particular, we suggest a mechanism to explain acoustic contributions to mass transport in porous media at geological, unit operation and lab-on-a-chip length scales. We study several cases of steady acoustic flow for a planar acoustic wave whose wavelength is large compared with the pore size. We commence our analysis at the ideal limit of same acoustic properties in the solid and fluid. The effective flow may then be treated intuitively according to the Darcy equation for flow through porous media in addition to a correction for the average azimuth of the pores compared with the acoustic path. We further consider the framework of a rigid porous frame, where the presence of a flow forcing mechanism resulting from the viscous dissipation of the acoustic wave at the solid surface of the pores hinders the intuitive application of the Darcy equation. However, we show that the steady acoustic flow in this case may be written as a quasi-Darcy-type equation. The analysis is conducted by a detailed calculation of the transport of mass through cylindrical pores of similar size but arbitrary azimuth compared with the acoustic path. We consider large, medium and small pore diameter limits relative to the viscous penetration length of the acoustic wave near the pore surface.